Integrated Metagenomic and Metabolomic Analysis of In Vitro Murine Gut Microbial Cultures upon Bisphenol S Exposure.

双酚S暴露下小鼠肠道微生物体外培养的宏基因组学和代谢组学综合分析

阅读:3
作者:Cox Amon, Nowshad Farrhin, Callaway Evelyn, Jayaraman Arul
BACKGROUND: The gut microbiota are an important interface between the host and the environment, mediating the host's interactions with nutritive and non-nutritive substances. Dietary contaminants like Bisphenol A (BPA) may disrupt the microbial community, leaving the host susceptible to additional exposures and pathogens. BPA has long been a controversial and well-studied contaminant, so its structural analogues like Bisphenol S (BPS) are replacing it in consumer products, but have not been well studied. METHODS: This study aimed to determine the impact of BPS on C57BL/6 murine gut microbiota using shotgun metagenomic sequencing and the metabolomic profiling of in vitro anaerobic cultures. RESULTS: The results demonstrated that a supraphysiologic BPS dose did not overtly distort the metagenomic or metabolomic profiles of exposed cultures compared to controls. A distinct BPS-associated metabolite profile was not observed, but several metabolites, including saturated fatty acids, were enriched in the BPS-exposed cultures. In the absence of a BPS-associated enterotype, Lactobacillus species specifically were associated with BPS exposure in a discriminant model. CONCLUSIONS: Our study provides evidence contrasting the effects of BPS in the gut microbiome to its predecessor, BPA, but also emphasizes the role of inter-animal variation in microbiome composition, indicating that further study is needed to characterize BPS in this context.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。