The ever-growing installation of solar power systems imposes severe challenges on the operations of local and regional power grids due to the inherent intermittency and variability of ground-level solar irradiance. In recent decades, solar forecasting methodologies for intra-hour, intra-day and day-ahead energy markets have been extensively explored as cost-effective technologies to mitigate the negative effects on the power grids caused by solar power instability. In this work, the progress in intra-hour solar forecasting methodologies are comprehensively reviewed and concisely summarized. The theories behind the forecasting methodologies and how these theories are applied in various forecasting models are presented. The reviewed mathematical tools include regressive methods, stochastic learning methods, deep learning methods, and genetic algorithm. The reviewed forecasting methodologies include data-driven methods, local-sensing methods, hybrid forecasting methods, and application orientated methods that generate probabilistic forecasts and spatial forecasts. Furthermore, suggestions to accelerate the development of future intra-hour forecasting methods are provided.
Intra-hour irradiance forecasting techniques for solar power integration: a review.
太阳能并网发电的小时内辐照度预测技术:综述
阅读:3
作者:Chu Yinghao, Li Mengying, Coimbra Carlos F M, Feng Daquan, Wang Huaizhi
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2021 | 起止号: | 2021 Sep 20; 24(10):103136 |
| doi: | 10.1016/j.isci.2021.103136 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
