Exploring the therapeutic potential of Derris elliptica (Wall.) Benth in Streptozotocin-Induced diabetic Rats: Phytochemical characterization and antidiabetic evaluation.

探索 Derris elliptica (Wall.) Benth 在链脲佐菌素诱导的糖尿病大鼠中的治疗潜力:植物化学表征和抗糖尿病评价

阅读:5
作者:Abd Rahman Rassheda, Jayasingh Chellammal Hanish Singh, Ali Shah Syed Adnan, Mohd Zohdi Rozaini, Ramachandran Dhani, Mohsin Hannis Fadzillah
Derris elliptica (Wall.) Benth, a native medicinal plant, has been used to treat diabetes for centuries; however, comprehensive documentation of its bioactive constituents and therapeutic effectiveness is lacking. In this study, we investigated the phytochemical profile and antidiabetic potential of D. elliptica methanolic leaf extract (DEME) in diabetic Sprague Dawley rats induced with streptozotocin (STZ). In normal rats, acute oral toxicity evaluations were conducted, and in STZ-induced rats, antidiabetic properties were investigated. 14 days of oral administration of standard glibenclamide and the extract at 200 and 400 mg/kg body weight to diabetic rodents. Assessed parameters included blood glucose levels, alterations in body weight, biochemical markers, and histological analysis of the pancreas, liver, and kidney. Numerous phytoconstituents were uncovered through qualitative phytochemical assays, (1)H NMR, and (1)H-(13)C HSQC screening. Quercetin was identified by (1)H NMR characterization, and a ceramide analogue compound was isolated and partially characterized by (1)H NMR. There were no indications of toxicity or mortality. The treatment with DEME significantly (p < 0.001) decreased body weight and had a remarkable hypoglycemic effect. Both 200 mg/kg and 400 mg/kg extract concentrations decreased total cholesterol levels significantly (p < 0.01 and p < 0.05, respectively). In addition, glibenclamide and the 400 mg/kg dose of extract increased serum insulin levels substantially (p < 0.05) and decreased total bilirubin, lactic acid dehydrogenase, aspartate aminotransferase, and alanine aminotransferase levels. In addition to glibenclamide, treatment with DEME has exhibited cytoprotective effects and increased insulin secretion, thereby exerting a potent antihyperglycemic effect. These results suggest that D. elliptica may have therapeutic potential for the treatment of diabetes mellitus.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。