An efficient hardware architecture based on an ensemble of deep learning models for COVID -19 prediction.

一种基于深度学习模型集成的COVID-19预测高效硬件架构

阅读:5
作者:R Sakthivel, Thaseen I Sumaiya, M Vanitha, M Deepa, M Angulakshmi, R Mangayarkarasi, Mahendran Anand, Alnumay Waleed, Chatterjee Puspita
Deep learning models demonstrate superior performance in image classification problems. COVID-19 image classification is developed using single deep learning models. In this paper, an efficient hardware architecture based on an ensemble deep learning model is built to identify the COVID-19 using chest X-ray (CXR) records. Five deep learning models namely ResNet, fitness, IRCNN (Inception Recurrent Convolutional Neural Network), effectiveness, and Fitnet are ensembled for fine-tuning and enhancing the performance of the COVID-19 identification; these models are chosen as they individually perform better in other applications. Experimental analysis shows that the accuracy, precision, recall, and F1 for COVID-19 detection are 0.99,0.98,0.98, and 0.98 respectively. An application-specific hardware architecture incorporates the pipeline, parallel processing, reusability of computational resources by carefully exploiting the data flow and resource availability. The processing element (PE) and the CNN architecture are modeled using Verilog, simulated, and synthesized using cadence with Taiwan Semiconductor Manufacturing Co Ltd (TSMC) 90 nm tech file. The simulated results show a 40% reduction in the latency and number of clock cycles. The computations and power consumptions are minimized by designing the PE as a data-aware unit. Thus, the proposed architecture is best suited for Covid-19 prediction and diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。