Cavitation erosion at the high hydrostatic pressure causes the equipment to operate abnormally for the huge economic losses. Few methods can quantitatively evaluate the cavitation erosion intensity. In order to solve this problem, the cavitation erosion on a copper plate was carried out in a spherical cavity focused transducer system at the hydrostatic pressure of 3, 6, and 10Â MPa. Meanwhile, the corresponding cavitation threshold, the initial bubble radius, and the microjet velocity in the ultrasonic field are theoretically analyzed to determine the dimension and velocity of microjet based on the following hypotheses: (1) the influence of the coalescence on the bubble collapse is ignored; (2) the dimension of the microjet is equal to the largest bubble size without the influence of gravity and buoyancy. Using the Westervelt equation for the nonlinear wave propagation and the Johnson-Cook material constitutive model for the high strain rate, a microjet impact model of the multi-bubble cavitation was constructed. In addition, through the analogy with the indentation test, an inversion model was proposed to calculate the microjet velocity and the cavitation erosion intensity. The microjet geometric model was constructed from the dimension and velocity of the microjet. The continuous microjet impact was proposed according to the equivalent impact momentum and solved by the finite element method. The relative errors of the pit depth are 4.02%, 3.34%, and 1.84% at the hydrostatic pressure of 3, 6, and 10Â MPa, respectively, and the relative error in the evolution of pit morphology is 7.33% at 10Â MPa, which verified the reliability of the proposed models. Experimental and simulation results show that the higher the hydrostatic pressure, the greater the pit depth, pit diameter, the pit-to-microjet diameter ratio, and the cavitation erosion intensity, but the smaller the pit diameter-to-depth ratio. The cavitation erosion intensity becomes significant with the ongoing ultrasonic exposure. In addition, a comparison of the cavitation pit morphology in the microjet pulsed and continuous impact modes shows that the continuous impact mode is effective without the elastic deformation caused by the residual stress. Using the cavitation pit morphology at the different hydrostatic pressures, the microjet velocity can be estimated successfully and accurately in a certain range, whose corresponding errors at the lower and upper limit are 5.98% and 0.11% at 3Â MPa, 6.62% and 9.14% at 6Â MPa, 6.54% and 5.42% at 10Â MPa, respectively. Our proposed models are valid only when the cavitation pit diameter-to-depth ratio is close to 1. Altogether, the cavitation erosion induced by multi-bubble collapses in the focal region of a focused transducer could be evaluated both experimentally and numerically. Using the cavitation pit morphology and the inversion model, the microjet velocity in a certain range could be estimated successfully with satisfactory accuracy.
Quantitative evaluation of the microjet velocity and cavitation erosion on a copper plate produced by a spherical cavity focused transducer at the high hydrostatic pressure.
对高静水压力下球形空腔聚焦换能器产生的微射流速度和铜板上的空化侵蚀进行定量评价
阅读:3
作者:Xiong Jiupeng, Liu Yalu, Li Chenghai, Zhou Yufeng, Li Faqi
| 期刊: | Ultrasonics Sonochemistry | 影响因子: | 9.700 |
| 时间: | 2022 | 起止号: | 2022 Jan;82:105899 |
| doi: | 10.1016/j.ultsonch.2021.105899 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
