Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements, chromosome phasing, and reconstructing genomes without a reference, require solving tasks of high computational complexity. Here we demonstrate a method for solving genome assembly tasks with the use of quantum and quantum-inspired optimization techniques. Within this method, we present experimental results on genome assembly using quantum annealers both for simulated data and the [Formula: see text]X 174 bacteriophage. Our results pave a way for a significant increase in the efficiency of solving bioinformatics problems with the use of quantum computing technologies and, in particular, quantum annealing might be an effective method. We expect that the new generation of quantum annealing devices would outperform existing techniques for de novo genome assembly. To the best of our knowledge, this is the first experimental study of de novo genome assembly problems both for real and synthetic data on quantum annealing devices and quantum-inspired techniques.
Genome assembly using quantum and quantum-inspired annealing.
利用量子退火和量子启发式退火进行基因组组装
阅读:4
作者:Boev A S, Rakitko A S, Usmanov S R, Kobzeva A N, Popov I V, Ilinsky V V, Kiktenko E O, Fedorov A K
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2021 | 起止号: | 2021 Jun 23; 11(1):13183 |
| doi: | 10.1038/s41598-021-88321-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
