Deciphering the SAM- and metal-dependent mechanism of O-methyltransferases in cystargolide and belactosin biosynthesis: A structure-activity relationship study.

解析胱硫醚和贝拉克素生物合成中 O-甲基转移酶的 SAM 和金属依赖机制:结构-活性关系研究

阅读:4
作者:Kuttenlochner Wolfgang, Beller Patrick, Kaysser Leonard, Groll Michael
Cystargolides and belactosins are natural products with a distinct dipeptide structure and an electrophilic β-lactone warhead. They are known to inhibit proteases such as the proteasome or caseinolytic protease P, highlighting their potential in treating cancers and neurodegenerative diseases. Recent genetic analyses have shown homology between the biosynthetic pathways of the two inhibitors. Here, we characterize the O-methyltransferases BelI and CysG, which catalyze the initial step of β-lactone formation. Employing techniques such as crystallography, computational analysis, mutagenesis, and activity assays, we identified a His-His-Asp (HHD) motif in the active sites of the two enzymes, which is crucial for binding a catalytically active calcium ion. Our findings thus elucidate a conserved divalent metal-dependent mechanism in both biosynthetic pathways that distinguish BelI and CysG from previously characterized O-methyltransferases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。