BACKGROUND AND OBJECTIVE: Magnetic resonance imaging (MRI) has emerged as a noninvasive clinical tool for assessment of hepatic steatosis. Multi-spectral fat-water MRI models, incorporating single or dual transverse relaxation decay rate(s) (R2*) have been proposed for accurate fat fraction (FF) estimation. However, it is still unclear whether single- or dual-R2* model accurately mimics in vivo signal decay for precise FF estimation and the impact of signal-to-noise ratio (SNR) on each model performance. Hence, this study aims to construct virtual steatosis models and synthesize MRI signals with different SNRs to systematically evaluate the accuracy of single- and dual-R2* models for FF and R2* estimations at 1.5T and 3.0T. METHODS: Realistic hepatic steatosis models encompassing clinical FF range (0-60Â %) were created using morphological features of fat droplets (FDs) extracted from human liver biopsy samples. MRI signals were synthesized using Monte Carlo simulations for noise-free (SNR(ideal)) and varying SNR conditions (5-100). Fat-water phantoms were scanned with different SNRs to validate simulation results. Fat water toolbox was used to calculate R2* and FF for both single- and dual-R2* models. The model accuracies in R2* and FF estimates were analyzed using linear regression, bias plot and heatmap analysis. RESULTS: The virtual steatosis model closely mimicked in vivo fat morphology and Monte Carlo simulation produced realistic MRI signals. For SNR(ideal) and moderate-high SNRs, water R2* (R2*W) by dual-R2* and common R2* (R2*com) by single-R2* model showed an excellent agreement with slope close to unity (0.95-1.01) and R(2)Â >Â 0.98Â at both 1.5T and 3.0T. In simulations, the R2*com-FF and R2*W-FF relationships exhibited slopes similar to in vivo calibrations, confirming the accuracy of our virtual models. For SNR(ideal,) fat R2* (R2*F) was similar to R2*W and dual-R2* model showed slightly higher accuracy in FF estimation. However, in the presence of noise, dual-R2* produced higher FF bias with decreasing SNR, while leading to only marginal improvement for high SNRs and in regions dominated by fat and water. In contrast, single-R2* model was robust and produced accurate FF estimations in simulations and phantom scans with clinical SNRs. CONCLUSION: Our study demonstrates the feasibility of creating virtual steatosis models and generating MRI signals that mimic in vivo morphology and signal behavior. The single-R2* model consistently produced lower FF bias for clinical SNRs across entire FF range compared to dual-R2* model, hence signifying that single-R2* model is optimal for assessing hepatic steatosis.
Hepatic steatosis modeling and MRI signal simulations for comparison of single- and dual-R2* models and estimation of fat fraction at 1.5T and 3T.
肝脂肪变性建模和 MRI 信号模拟,用于比较单 R2* 模型和双 R2* 模型,并估计 1.5T 和 3T 下的脂肪分数
阅读:5
作者:Shrestha Utsav, Esparza Juan P, Satapathy Sanjaya K, Vanatta Jason M, Abramson Zachary R, Tipirneni-Sajja Aaryani
| 期刊: | Computers in Biology and Medicine | 影响因子: | 6.300 |
| 时间: | 2024 | 起止号: | 2024 May;174:108448 |
| doi: | 10.1016/j.compbiomed.2024.108448 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
