World Health Organization (WHO) stated COVID-19 as a pandemic in March 2020. Since then, 26,795,847 cases have been reported worldwide, and 878,963 lost their lives due to the illness by September 3, 2020. Prediction of the COVID-19 pandemic will enable policymakers to optimize the use of healthcare system capacity and resource allocation to minimize the fatality rate. In this research, we design a novel hybrid reinforcement learning-based algorithm capable of solving complex optimization problems. We apply our algorithm to several well-known benchmarks and show that the proposed methodology provides quality solutions for most complex benchmarks. Besides, we show the dominance of the offered method over state-of-the-art methods through several measures. Moreover, to demonstrate the suggested method's efficiency in optimizing real-world problems, we implement our approach to the most recent data from Quebec, Canada, to predict the COVID-19 outbreak. Our algorithm, combined with the most recent mathematical model for COVID-19 pandemic prediction, accurately reflected the future trend of the pandemic with a mean square error of 6.29E-06. Furthermore, we generate several scenarios for deepening our insight into pandemic growth. We determine essential factors and deliver various managerial insights to help policymakers making decisions regarding future social measures.
Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec.
设计一种基于混合强化学习的算法,并将其应用于预测魁北克省的 COVID-19 疫情
阅读:7
作者:Khalilpourazari Soheyl, Hashemi Doulabi Hossein
| 期刊: | Ann Oper Res | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022;312(2):1261-1305 |
| doi: | 10.1007/s10479-020-03871-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
