Preparation of dihydroxy polycyclic aromatic hydrocarbons and activities of two dioxygenases in the phenanthrene degradative pathway.

二羟基多环芳烃的制备及菲降解途径中两种双加氧酶的活性

阅读:4
作者:Erwin Kaci L, Johnson William H Jr, Meichan Andrew J, Whitman Christian P
Dihydroxy phenanthrene, fluoranthene, and pyrene derivatives are intermediates in the bacterial catabolism of the corresponding parent polycyclic aromatic hydrocarbon (PAH). Ring-opening of the dihydroxy species followed by a series of enzyme-catalyzed reactions generates metabolites that funnel into the Krebs Cycle with the eventual production of carbon dioxide and water. One complication in delineating these pathways and harnessing them for useful purposes is that the initial enzymatic processing produces multiple dihydroxy PAHs with multiple ring opening possibilities and products. As part of a systematic effort to address this issue, eight dihydroxy species were synthesized and characterized as the dimethoxy or diacetate derivatives. Several dihydroxy compounds were examined with two dioxygenases in the phenanthrene degradative pathway in Mycobacterium vanbaalenii PYR-1. One, 3,4-dihydroxyphenanthrene, was processed by PhdF with a k(cat)/K(m) of 6.0 × 10(6) M(-1)s(-1), a value that is consistent with the annotated function of PhdF in the pathway. PhdI processed 1-hydroxy-2-naphthoate with a k(cat)/K(m) of 3.1 × 10(5) M(-1)s(-1), which is also consistent with the proposed role in the pathway. The observations provide the first biochemical evidence for these two reactions in M. vanbaalenii PYR-1 and, to the best of our knowledge, the first biochemical evidence for the reaction of PhdF with 3,4-dihydroxyphenanthrene. Although PhdF is upregulated in the presence of pyrene, it did not process two dihydroxypyrenes. Methodology was developed for product analysis of the extradiol dioxygenases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。