Dynamic patterns of H3K4me3, H3K27me3, and Nanog during rabbit embryo development

兔胚胎发育过程中 H3K4me3、H3K27me3 和 Nanog 的动态模式

阅读:10
作者:Jiao Liu, Liyou An, Jiqiang Wang, Zhihui Liu, Yujian Dai, Yanhong Liu, Lan Yang, Fuliang Du

Abstract

Epigenetic modification and expression of key pluripotent factors are critical for development, cell fate determination, and differentiation in early embryos. In this study, we systematically examined the dynamic patterns of histone modifications (H3K4me3 and H3K27me3) and Nanog expression during the development of preimplantation rabbit embryos. Rabbit oocytes, 1-, 2-, 4-, 8-, and 16-cell embryos, morulae, and blastocysts were collected at specific time points following superovulation and assessed for nuclear H3K4me3, H3K27me3, and Nanog expression by immunofluorescence microscopy. The frequency of H3K4me3-positive nuclear staining was highest in oocytes through 4-cell embryos (100%), decreased in 8-cell (97.2%) and 16-cell (94.4%) embryos (P > 0.05), declined dramatically in morulae (86.7%) (1- through 8-cell embryos vs morulae, P < 0.05), and was the lowest in blastocysts (76.2%) (P < 0.05). Nuclear staining of H3K27me3 was negative in oocytes and embryos through the 16-cell stage but was positive in 25.9% of morulae and 34.2% of blastocyst (P < 0.05). Similarly, rabbit oocytes and embryos through the 16-cell stage did not express Nanog, but Nanog was expressed in 24.9% of morulae and 36.5% of blastocysts (P < 0.05). The observed decrease in H3K4me3 and increase in H3K27me3 as development progressed in preimplantation rabbit embryos, together with late Nanog expression, indicates a correlation of these factors with early embryonic cell fate determination and differentiation. Our study provides a specific and dynamic profile of histone modifications and gene expression that will be important for the derivation of rabbit embryonic stem cells and improving rabbit cloning by somatic cell nuclear transfer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。