Sex Determination of 3D Skull Based on a Novel Unsupervised Learning Method.

基于新型无监督学习方法的三维头骨性别鉴定

阅读:3
作者:Gao Hongjuan, Geng Guohua, Yang Wen
In law enforcement investigation cases, sex determination from skull morphology is one of the important steps in establishing the identity of an individual from unidentified human skeleton. To our knowledge, existing studies of sex determination of the skull mostly utilize supervised learning methods to analyze and classify data and can have limitations when applied to actual cases with the absence of category labels in the skull samples or a large difference in the number of male and female samples of the skull. This paper proposes a novel approach which is based on an unsupervised classification technique in performing sex determination of the skull of Han Chinese ethnic group. The 78 landmarks on the outer surface of 3D skull models from computed tomography scans are marked, and a skull dataset of a total of 40 interlandmark measurements is constructed. A stable and efficient unsupervised algorithm which we abbreviated as MKDSIF-FCM is proposed to address the classification problem for the skull dataset. The experimental results of the adult skull suggest that the proposed MKDSIF-FCM algorithm warrants fairly high sex determination accuracy for females and males, which is 98.0% and 93.02%, respectively, and is superior to all the classification methods we attempted. As a result of its fairly high accuracy, extremely good stability, and the advantage of unsupervised learning, the proposed method is potentially applicable for forensic investigations and archaeological studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。