SARS-CoV-2 virus and other pathogenic microbes are transmitted to the environment through contacting surfaces, which need to be sterilized for the prevention of COVID-19 and related diseases. In this study, a prototype of a cost-effective sterilization box is developed to disinfect small items. The box utilizes ultra violet (UV) radiation with heat. For performance assessment, two studies were performed. First, IgG (glycoprotein, a model protein similar to that of spike glycoprotein of SARS-COV-2) was incubated under UV and heat sterilization. An incubation with UV at 70 °C for 15 min was found to be effective in unfolding and aggregation of the protein. At optimized condition, the hydrodynamic size of the protein increased to ~171 nm from ~5 nm of the native protein. Similarly, the OD(280) values also increased from 0.17 to 0.78 indicating the exposure of more aromatic moieties and unfolding of the protein. The unfolding and aggregation of the protein were further confirmed by the intrinsic fluorescence measurement and FTIR studies, showing a 70% increase in the β-sheets and a 22% decrease in the α-helixes of the protein. The designed box was effective in damaging the protein's native structure indicating the effective inactivation of the SARS-COV-2. Furthermore, the incubation at 70 °C for 15 min inside the chamber resulted in 100% antibacterial efficacy for the clinically relevant E.coli bacteria as well as for bacteria collected from daily use items. It is the first detailed performance study on the efficacy of using UV irradiation and heat together for disinfection from virus and bacteria.
Performance study of a sterilization box using a combination of heat and ultraviolet light irradiation for the prevention of COVID-19.
利用热能和紫外线照射相结合的方法对消毒箱预防 COVID-19 的性能进行研究
阅读:4
作者:Mahanta Nilkamal, Saxena Varun, Pandey Lalit M, Batra Priyanka, Dixit U S
| 期刊: | Environmental Research | 影响因子: | 7.700 |
| 时间: | 2021 | 起止号: | 2021 Jul;198:111309 |
| doi: | 10.1016/j.envres.2021.111309 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
