Calculations of energy deposition and ionization in the 2019 novel coronavirus by electron beam irradiation.

利用电子束辐照计算2019新型冠状病毒的能量沉积和电离

阅读:4
作者:Zhang Xiaqi, Wang Fang, Weng Ming, Cao Meng
Using Monte Carlo methods, this study investigates energy deposition of energetic electrons and ionization in the 2019 novel coronavirus by electron irradiation, which are important characteristic quantities related with biological damage formation. The inelastic scattering of low-energy electrons (<10 keV) was calculated by dielectric theory. The optical energy-loss functions of viral proteins and RNA were derived from an empirical method in the energy-loss range <40 eV and the calculation of optical parameters of the biomolecules. The densities and distributions of energy deposition and ionization were calculated from the stopping power and inelastic cross-sections in the electron-cascade simulation. Electrons with primary energies of approximately 1-3 keV produced significant energy deposition and ionization in the target coronavirus. More energetic electrons were less effective due to the larger electron range and fewer scattering events in the coronavirus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。