INTRODUCTION: The incidence of prostate cancer is increasing in Poland, particularly due to the aging population. This review explores the potential of deep learning algorithms to accelerate prostate contouring during fusion biopsies, a time-consuming but crucial process for the precise diagnosis and appropriate therapeutic decision-making in prostate cancer. Implementing convolutional neural networks (CNNs) can significantly improve segmentation accuracy in multiparametric magnetic resonance imaging (mpMRI). MATERIAL AND METHODS: A comprehensive literature review was conducted using PubMed and IEEE Xplore, focusing on open-access studies from the past five years, and following PRISMA 2020 guidelines. The review evaluates the enhancement of prostate contouring and segmentation in MRI for fusion biopsies using CNNs. RESULTS: The results indicate that CNNs, particularly those utilizing the U-Net architecture, are predominantly selected for advanced medical image analysis. All the reviewed algorithms achieved a Dice similarity coefficient (DSC) above 74%, indicating high precision and effectiveness in automatic prostate segmentation. However, there was significant heterogeneity in the methods used to evaluate segmentation outcomes across different studies. CONCLUSIONS: This review underscores the need for developing and optimizing segmentation algorithms tailored to the specific needs of urologists performing fusion biopsies. Future research with larger cohorts is recommended to confirm these findings and further enhance the practical application of CNN-based segmentation tools in clinical settings.
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.
对融合活检中用于前列腺分割的不同卷积神经网络进行综述
阅读:4
作者:Zwolski Maciej, Kupilas Andrzej, Cnota PrzemysÅaw
| 期刊: | Central European Journal of Urology | 影响因子: | 1.900 |
| 时间: | 2025 | 起止号: | 2025;78(1):23-39 |
| doi: | 10.5173/ceju.2024.0064 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
