Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.

对融合活检中用于前列腺分割的不同卷积神经网络进行综述

阅读:8
作者:Zwolski Maciej, Kupilas Andrzej, Cnota Przemysław
INTRODUCTION: The incidence of prostate cancer is increasing in Poland, particularly due to the aging population. This review explores the potential of deep learning algorithms to accelerate prostate contouring during fusion biopsies, a time-consuming but crucial process for the precise diagnosis and appropriate therapeutic decision-making in prostate cancer. Implementing convolutional neural networks (CNNs) can significantly improve segmentation accuracy in multiparametric magnetic resonance imaging (mpMRI). MATERIAL AND METHODS: A comprehensive literature review was conducted using PubMed and IEEE Xplore, focusing on open-access studies from the past five years, and following PRISMA 2020 guidelines. The review evaluates the enhancement of prostate contouring and segmentation in MRI for fusion biopsies using CNNs. RESULTS: The results indicate that CNNs, particularly those utilizing the U-Net architecture, are predominantly selected for advanced medical image analysis. All the reviewed algorithms achieved a Dice similarity coefficient (DSC) above 74%, indicating high precision and effectiveness in automatic prostate segmentation. However, there was significant heterogeneity in the methods used to evaluate segmentation outcomes across different studies. CONCLUSIONS: This review underscores the need for developing and optimizing segmentation algorithms tailored to the specific needs of urologists performing fusion biopsies. Future research with larger cohorts is recommended to confirm these findings and further enhance the practical application of CNN-based segmentation tools in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。