Many severe epidemics and pandemics have hit human civilizations throughout history. The recent Sever Actuate Respiratory disease SARS-CoV-2 known as COVID-19 became a global disease and is still growing around the globe. It has severely affected the world's economy and ways of life. It necessitates predicting the spread in advance and considering various control policies to avoid the country's complete closure. In this paper, we propose deep learning-based stacked Bi-directional long short-term memory (Stacked Bi-LSTM) network that forecasts COVID-19 more accurately for the country of South Korea. The paper's main objectives are to present a lightweight, accurate, and optimized model to predict the spread considering restriction policies such as school closure, workspace closing, and the canceling of public events. Based on the fourteen parameters (including control policies), we predict and forecast the future value of the number of positive, dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.
COVID-19 spread control policies based early dynamics forecasting using deep learning algorithm.
基于深度学习算法的早期动态预测的COVID-19传播控制政策
阅读:4
作者:Ali Furqan, Ullah Farman, Khan Junaid Iqbal, Khan Jebran, Sardar Abdul Wasay, Lee Sungchang
| 期刊: | Chaos Solitons & Fractals | 影响因子: | 5.600 |
| 时间: | 2023 | 起止号: | 2023 Feb;167:112984 |
| doi: | 10.1016/j.chaos.2022.112984 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
