Noncompetitive Inhibition of Bovine Liver Catalase by Lawsone: Kinetics, Binding Mechanism and in silico Modeling Approaches.

Lawsone 对牛肝过氧化氢酶的非竞争性抑制:动力学、结合机制和计算机模拟方法

阅读:15
作者:Khataee Simin, Dehghan Gholamreza, Rashtbari Samaneh, Dastmalchi Siavash, Iranshahi Mehrdad
Lawsone (2-hydroxy-1,4-naphtoquinone; LAW), as a naphthoquinone derivative, is the biologically active component of Henna leaves. In this study, the structural and functional effects of LAW on bovine liver catalase (BLC), has been studied utilizing ultraviolet-visible (UV-vis) absorption, fluorescence, and ATR-FTIR spectroscopic techniques, and molecular docking approach. In-vitro kinetic study showed that by adding gradual concentrations of LAW, catalase activity was significantly decreased through noncompetitive inhibition mechanism. UV-vis and ATR-FTIR spectroscopic results illustrated that additional concentration of LAW lead to significant change in secondary structure of the enzyme.The fluorescence spectroscopic results at different temperatures indicated that LAW quenches the intrinsic fluorescence of BLC by dynamic mechanismand there is just one binding site for LAW on BCL. Changing the micro-environment nearby two aromatic residues (tryptophan (Trp) and tyrosine (Tyr)) were resulted from synchronous fluorescence. The thermodynamic parameters were implied that the hydrophobic bindings have a significant impress in the organization of the LAW-catalase complex. Molecular docking data in agreement with experimental results, confirmed that hydrophobic interactions are dominant. Inhibition of enzyme activity by LAW, showed that along withits helpful effects as ananti-oxidant compounds, the side effects of LAW should not be overlooked.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。