Thalamic ventrobasal (VB) relay neurons receive information via two major types of glutamatergic synapses, that is, from the medial lemniscus (lemniscal synapses) and primary somatosensory cortex (corticothalamic synapses). These two synapses influence and coordinate firing responses of VB neurons, but their precise operational mechanisms are not yet well understood. In this study, we compared the composition of glutamate receptors and synaptic properties of corticothalamic and lemniscal synapses. We found that the relative contribution of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) to non-NMDA receptor-mediated EPSCs was significantly greater in corticothalamic synapses than in lemniscal synapses. Furthermore, NMDA receptor 2B-containing NMDA receptor- and kainate receptor-mediated currents were observed only in corticothalamic synapses, but not in lemniscal synapses. EPSCs in corticothalamic synapses displayed the postsynaptic summation in a frequency-dependent manner, in which the summation of the NMDA receptor-mediated component was largely involved. The summation of kainate receptor-mediated currents also partially contributed to the postsynaptic summation in corticothalamic synapses. In contrast, the contribution of NMDA receptor-mediated currents to the postsynaptic summation of lemniscal EPSCs was relatively minor. Furthermore, our results indicated that the prominent NMDA receptor-mediated component in corticothalamic synapses was the key determinant for the late-persistent firing of VB neurons in response to corticothalamic stimuli. In lemniscal synapses, in contrast, the onset-transient firing in response to lemniscal stimuli was regulated mainly by AMPA receptors.
Different composition of glutamate receptors in corticothalamic and lemniscal synaptic responses and their roles in the firing responses of ventrobasal thalamic neurons in juvenile mice.
幼鼠皮质丘脑和内侧丘系突触反应中谷氨酸受体的组成不同及其在腹后丘脑神经元放电反应中的作用
阅读:3
作者:Miyata Mariko, Imoto Keiji
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2006 | 起止号: | 2006 Aug 15; 575(Pt 1):161-74 |
| doi: | 10.1113/jphysiol.2006.114413 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
