Expression of glutathione peroxidase 1 in the spheno-occipital synchondrosis and its role in ROS-induced apoptosis

谷胱甘肽过氧化物酶1在蝶枕软骨联合中的表达及其在ROS诱导细胞凋亡中的作用

阅读:6
作者:Vasiliki Koretsi, Christian Kirschneck, Peter Proff, Piero Römer

Conclusions

Hypertrophic chondrocytes have the lowest Gpx1 activity in the spheno-occipital synchondrosis. Gpx1 is implicated in the ROS-induced apoptosis in chondrocytes. Its expression was not constitutive during chondrogenic differentiation.

Methods

Gpx1 was semiquantified in immunohistochemically stained sections of spheno-occipital synchondroses of rats. The effect of Gpx1 on ROS-induced apoptosis was investigated by manipulating the expression of Gpx1 in ATDC5 cells. The temporal pattern of Gpx1 expression was determined during chondrocyte differentiation for 21 days in vitro.

Objective

Chondrogenesis is an integral part of endochondral bone formation, by which the midline cranial base is developed. Reactive oxygen species (ROS) are required in chondrogenic differentiation and antioxidant enzymes regulate their levels. The aim of this study was to localize the antioxidant enzyme glutathione peroxidase 1 (Gpx1) at the spheno-occipital synchondrosis, as well as its effect on ROS challenge and its expression pattern in the course of differentiation. Materials and

Results

Proliferating chondrocytes exhibited the greatest Gpx1 immunoreactivity and hypertrophic ones the lowest (P = 0.02). Cells transfected with Gpx1-siRNA had the highest apoptotic rate, while cells overexpressing Gpx1 the lowest one (P < 0.001). Gpx1 was significantly increased on days 10 (P = 0.02) and 14 (P = 0.01). Conclusions: Hypertrophic chondrocytes have the lowest Gpx1 activity in the spheno-occipital synchondrosis. Gpx1 is implicated in the ROS-induced apoptosis in chondrocytes. Its expression was not constitutive during chondrogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。