BACKGROUND: In the field of drug repositioning, it is assumed that similar drugs may treat similar diseases, therefore many existing computational methods need to compute the similarities of drugs and diseases. However, the calculation of similarity depends on the adopted measure and the available features, which may lead that the similarity scores vary dramatically from one to another, and it will not work when facing the incomplete data. Besides, supervised learning based methods usually need both positive and negative samples to train the prediction models, whereas in drug-disease pairs data there are only some verified interactions (positive samples) and a lot of unlabeled pairs. To train the models, many methods simply treat the unlabeled samples as negative ones, which may introduce artificial noises. Herein, we propose a method to predict drug-disease associations without the need of similarity information, and select more likely negative samples. RESULTS: In the proposed EMP-SVD (Ensemble Meta Paths and Singular Value Decomposition), we introduce five meta paths corresponding to different kinds of interaction data, and for each meta path we generate a commuting matrix. Every matrix is factorized into two low rank matrices by SVD which are used for the latent features of drugs and diseases respectively. The features are combined to represent drug-disease pairs. We build a base classifier via Random Forest for each meta path and five base classifiers are combined as the final ensemble classifier. In order to train out a more reliable prediction model, we select more likely negative ones from unlabeled samples under the assumption that non-associated drug and disease pair have no common interacted proteins. The experiments have shown that the proposed EMP-SVD method outperforms several state-of-the-art approaches. Case studies by literature investigation have found that the proposed EMP-SVD can mine out many drug-disease associations, which implies the practicality of EMP-SVD. CONCLUSIONS: The proposed EMP-SVD can integrate the interaction data among drugs, proteins and diseases, and predict the drug-disease associations without the need of similarity information. At the same time, the strategy of selecting more reliable negative samples will benefit the prediction.
Prediction of drug-disease associations based on ensemble meta paths and singular value decomposition.
基于集成元路径和奇异值分解的药物-疾病关联预测
阅读:3
作者:Wu Guangsheng, Liu Juan, Yue Xiang
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2019 | 起止号: | 2019 Mar 29; 20(Suppl 3):134 |
| doi: | 10.1186/s12859-019-2644-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
