Draw+: network-based computational drug repositioning with attention walking and noise filtering.

Draw+:基于网络的计算药物重定位,结合注意力行走和噪声过滤

阅读:5
作者:Park Jong-Hoon, Cho Young-Rae
PURPOSE: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions. METHODS: We present a novel network-based framework for drug repositioning, named DRAW+, which incorporates noise filtering and feature extraction using graph neural networks and attention mechanisms. The proposed model first constructs a heterogeneous network that integrates the drug-disease association network with the similarity networks of drugs and diseases, which are upgraded through reduced-rank singular value decomposition. Next, a subgraph surrounding the targeted drug-disease node pair is extracted, allowing the model to focus on local structures. Graph neural networks are then applied to extract structural representation, followed by attention walking to capture key features of the subgraph. Finally, a multi-layer perceptron classifies the subgraph as positive or negative, which indicates the presence of the link between the target node pair. RESULTS: Experimental validation across three benchmark datasets showed that DRAW+ outperformed seven state-of-the-art methods, achieving the highest average AUROC and AUPRC, 0.963 and 0.564, respectively. Moreover, DRAW+ demonstrated its robustness by achieving the best performance across two additional datasets, further confirming its generalizability and effectiveness in diverse settings. CONCLUSIONS: The proposed network-based computational approach, DRAW+, demonstrates exceptional accuracy and robustness, confirming its effectiveness in drug repositioning tasks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。