An adaptively multi-correlations aggregation network for skeleton-based motion recognition.

一种用于基于骨架的运动识别的自适应多相关聚合网络

阅读:3
作者:Yin Xinpeng, Zhong Jianqi, Lian Deliang, Cao Wenming
Previous work based on Graph Convolutional Networks (GCNs) has shown promising performance in 3D skeleton-based motion recognition. We believe that the 3D skeleton-based motion recognition problem can be explained as a modeling task of dynamic skeleton-based graph construction. However, existing methods fail to model human poses with dynamic correlations between human joints, ignoring the information contained in the skeleton structure of the non-connected relationship during human motion modeling. In this paper, we propose an Adaptively Multi-correlations Aggregation Network(AMANet) to capture dynamic joint dependencies embedded in skeleton graphs, which includes three key modules: the Spatial Feature Extraction Module (SFEM), Temporal Feature Extraction Module (TFEM), and Spatio-Temporal Feature Extraction Module (STFEM). In addition, we deploy the relative coordinates of the joints of various parts of the human body via moving frames of Differential Geometry. On this basis, we design a Data Preprocessing Module (DP), enriching the characteristics of the original skeleton data. Extensive experiments are conducted on three public datasets(NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton 400), demonstrating our proposed method's effectiveness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。