Conclusions
We show that the absence of a single endogenous factor, SP, significantly provides early protection against burn-induced ALI in mice with marked improvement in respiratory function. Thereby, the blockade of SP may be beneficial in preventing early inflammation and ALI in patients with critical burn injuries.
Methods
A 30% total body surface area full-thickness burn was induced in wild-type (WT) mice, preprotachykinin-A (PPT-A) gene deficient mice, which encodes for SP, and PPT-A(-/-) mice challenged with exogenous SP, followed by ALI and lung function analysis. Measurements and main
Results
Endogenous SP production was heightened in burn-injured WT mice, which induced significant elevation of proinflammatory cytokines, chemokines, and endothelial adhesion molecules concurrent with disruption of pulmonary permeability barrier, excessive neutrophil infiltration, and severe ALI. Additionally, decreased neutral endopeptidase and elevated matrix metalloproteinase-9 were evident. Notably, disruption of respiratory function demonstrates a critical role of SP in lungs after burn. These effects were significantly attenuated in PPT-A(-/-) mice, whereas the exogenous administration of SP to PPT-A(-/-) mice restored the inflammatory response and ALI. Furthermore, analysis of neurokinin-1-receptor (NK1R), to which SP binds preferentially, revealed that SP in conjunction with burn injury regulates NK1R expression. Conclusions: We show that the absence of a single endogenous factor, SP, significantly provides early protection against burn-induced ALI in mice with marked improvement in respiratory function. Thereby, the blockade of SP may be beneficial in preventing early inflammation and ALI in patients with critical burn injuries.
