In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining p-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.
Multiple testing for signal-agnostic searches for new physics with machine learning.
利用机器学习进行与信号无关的新物理搜索的多重检验
阅读:6
作者:Grosso Gaia, Letizia Marco
| 期刊: | European Physical Journal C | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025;85(1):4 |
| doi: | 10.1140/epjc/s10052-024-13722-5 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
