This study predicts the thermoelectric figure of merit (ZT) for defective gamma-graphyne nanoribbons (γ-GYNRs) using binary coding, convolutional neural networks (CNN), long short-term memory networks (LSTM), and multi-scale feature fusion. The approach accurately predicts ZT values with only 500 initial structures (3% of 16,512 candidates), achieving an R(2) above 0.91 and a mean absolute error (MAE) of 0.05 to 0.06. The use of artificial feature extraction combined with an attention mechanism reveals that the number and distribution of defects are crucial for achieving high ZT values. γ-GYNRs with moderate and evenly distributed defect count show superior thermoelectric performance. This demonstrates the effectiveness of neural networks in designing low-dimensional materials like γ-GYNRs and offers insights into exploring other materials with excellent thermoelectric properties.
A cutting-edge neural network approach for predicting the thermoelectric efficiency of defective gamma-graphyne nanoribbons.
一种用于预测缺陷γ-石墨炔纳米带热电效率的尖端神经网络方法
阅读:4
作者:Guo Jiayi, Cui Chunfeng, Ouyang Tao, Cao Juexian, Wei Xiaolin
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 7; 15(1):1182 |
| doi: | 10.1038/s41598-024-84074-z | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
