A549 Alveolar Carcinoma Spheroids as a Cytotoxicity Platform for Carboxyl- and Amine-Polyethylene Glycol Gold Nanoparticles.

A549 肺泡癌球体作为羧基和胺基聚乙二醇金纳米粒子的细胞毒性平台

阅读:17
作者:Petzer Melissa, Fobian Seth-Frerich, Gulumian Mary, Steenkamp Vanessa, Cordier Werner
Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs. A549 spheroids were generated using an agarose micro-mold and were characterized (morphology, acid phosphatase activity, protein content) over 21 culturing days. The 72-h cytotoxicity of carboxyl-polyethylene glycol- (PCOOH-) and amine-polyethylene glycol- (PNH(2)-) functionalized AuNPs against Day 7 spheroids was assessed by determining spheroid morphology, acid phosphatase activity, protein content, caspase-3/7 activity, and cell cycle kinetics. Spheroids remained stable over the experimental period. Although the A549 spheroids' volume increased while remaining viable over the culturing period, structural integrity decreased from Day 14 onwards. The PCOOH-AuNPs lacked cytotoxicity at a maximum concentration of 1.2 × 10(12) nanoparticles/mL with no prominent alteration to the cellular processes investigated, while the PNH(2)-AuNPs (at a maximum of 4.5 × 10(12) nanoparticles/mL) displayed dose- and time-dependent cytotoxicity with associated loss of spheroid compactness, debris formation, DNA fragmentation, and a 75% reduction in acid phosphatase activity. Differentiation between cytotoxic and non-cytotoxic AuNPs was achieved, with preliminary elucidation of cytotoxicity endpoints. The PNH(2)-AuNPs promote cytotoxicity by modulating cellular kinetics while destabilizing the spheroid ultrastructure. The model serves as a proficient platform for more in-depth elucidation of NP cytotoxicity at the preclinical investigation phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。