Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.
Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites.
Npr2 抑制 TORC1,以防止谷氨酰胺被不恰当地用于含氮代谢物的生物合成
阅读:4
作者:Laxman Sunil, Sutter Benjamin M, Shi Lei, Tu Benjamin P
| 期刊: | Science Signaling | 影响因子: | 6.600 |
| 时间: | 2014 | 起止号: | 2014 Dec 16; 7(356):ra120 |
| doi: | 10.1126/scisignal.2005948 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
