Dimeric Bis-Benzimidazole-Pyrroles DB2Py(n) - AT-Site-Specific Ligands: Synthesis, Physicochemical Analysis, and Biological Activity.

二聚双苯并咪唑吡咯 DB2Py(n) - AT 位点特异性配体:合成、物理化学分析和生物活性

阅读:6
作者:Susova O Y, Karshieva S S, Kostyukov A A, Moiseeva N I, Zaytseva E A, Kalabina K V, Zusinaite E, Gildemann K, Smirnov N M, Arutyunyan A F, Zhuze A L
Its broad spectrum of biological activity makes benzimidazole a fundamental pharmacophore in pharmaceutics. The paper describes newly synthesized AT-specific fluorescent bis-benzimidazole molecules DB2Py(n) that contain a pyrrolcarboxamide fragment of the antibiotic drug netropsin. Physico-chemical methods using absorption, fluorescence, and circular dichroism spectra have shown the ability of bis-benzimidazole- pyrroles to form complexes with DNA. The new DB2Py(n) series have turned out to be more toxic to human tumor lines and less vulnerable to non-tumor cell lines. Bis-benzimidazole-pyrroles penetrated the cell nucleus, affected the cell-cycle synthesis (S) phase, and inhibited eukaryotic topoisomerase I in a cellfree model at low concentrations. A real-time tumor cell proliferation test confirmed the molecule's enhanced toxic properties upon dimerization. Preliminary cytotoxicity data for the bis-benzimidazole-pyrroles tested in a cell model with a MDR phenotype showed that monomeric compounds can overcome MDR, while dimerization weakens this ability to its intermediate values as compared to doxorubicin. In this respect, the newly synthesized cytotoxic structures seem promising for further, in-depth study of their properties and action mechanism in relation to human tumor cells, as well as for designing new AT-specific ligands.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。