The task of directional hearing faces most animals that possess ears. They approach this task in different ways, but a common trait is the use of binaural cues to find the direction to the source of sound. In insects, the task is further complicated by their small size and, hence, minute temporal and level differences between two ears. A single symmetric flagellar particle velocity receiver, such as the antenna of a mosquito, should not be able to discriminate between the two opposite directions along the vector of the sound wave. Paired antennae of mosquitoes presume the usage of binaural hearing, but its mechanisms are expected to be significantly different from the ones typical for the pressure receivers. However, the directionality of flagellar auditory organs has received little attention. Here, we measured the in-flight orientation of antennae in female Culex pipiens pipiens mosquitoes and obtained a detailed physiological mapping of the Johnston's organ directionality at the level of individual sensory units. By combining these data, we created a three-dimensional model of the mosquito's auditory space. The orientation of the antennae was found to be coordinated with the neuronal asymmetry of the Johnston's organs to maintain a uniformly shaped auditory space, symmetric relative to a flying mosquito. The overlap of the directional characteristics of the left and right sensory units was found to be optimal for binaural hearing focused primarily in front of, above and below a flying mosquito.
Mapping the Auditory Space of Culex pipiens Female Mosquitoes in 3D.
绘制淡色库蚊雌蚊的三维听觉空间图
阅读:7
作者:Lapshin Dmitry N, Vorontsov Dmitry D
| 期刊: | Insects | 影响因子: | 2.900 |
| 时间: | 2023 | 起止号: | 2023 Sep 4; 14(9):743 |
| doi: | 10.3390/insects14090743 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
