Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy.

双重抑制经典蛋白激酶 C-α 和蛋白激酶 C-β 同工酶可预防实验性小鼠糖尿病肾病

阅读:3
作者:Menne Jan, Shushakova Nelli, Bartels Janina, Kiyan Yulia, Laudeley Robert, Haller Hermann, Park Joon-Keun, Meier Matthias
Activation of protein kinase C (PKC) has been implicated in the pathogenesis of diabetic nephropathy with proteinuria and peritubular extracellular matrix production. We have previously shown that the PKC isoforms α and β mediate different cellular effects. PKC-β contributes to hyperglycemia-induced renal matrix production, whereby PKC-α is involved in the development of albuminuria. We further tested this hypothesis by deletion of both isoforms and used a PKC inhibitor. We analyzed the phenotype of nondiabetic and streptozotocin (STZ)-induced diabetic homozygous PKC-α/β double-knockout mice (PKC-α/β(-/-)). After 8 weeks of diabetes mellitus, the high-glucose-induced renal and glomerular hypertrophy as well as transforming growth factor-β1) and extracellular matrix production were diminished in the PKC-α/β(-/-) mice compared with wild-type controls. Urinary albumin/creatinine ratio also was significantly reduced, however, it was not completely abolished in diabetic PKC-α/β(-/-) mice. Treatment with CGP41252, which inhibits PKC-α and PKC-β, is able to prevent the development of albuminuria and to reduce existing albuminuria in type 1 (STZ model) or type 2 (db/db model) diabetic mice. These results support our hypothesis that PKC-α and PKC-β contribute to the pathogenesis of diabetic nephropathy, and that dual inhibition of the classical PKC isoforms is a suitable therapeutic strategy in the prevention and treatment of diabetic nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。