An improved hippopotamus optimization algorithm based on adaptive development and solution diversity enhancement.

一种基于自适应发展和解多样性增强的改进型河马优化算法

阅读:11
作者:Pei Shengyu, Sun Gang, Tong Lang
This study proposes an improved hippopotamus optimization algorithm to address the limitations of the traditional hippopotamus optimization algorithm in terms of convergence performance and solution diversity in complex high-dimensional problems. Inspired by the natural behavior of hippopotamuses, this article introduces chaotic map initialization, an adaptive exploitation mechanism, and a solution diversity enhancement strategy based on the original algorithm. The chaotic map is employed to optimize the initial population distribution, thereby enhancing the global search capability. The adaptive exploitation mechanism dynamically adjusts the weights between the exploration and exploitation phases to balance global and local searches. The solution diversity enhancement is achieved through the introduction of nonlinear perturbations, which help the algorithm avoid being trapped in local optima. The proposed algorithm is validated on several standard benchmark functions (CEC17, CEC22), and the results demonstrate that the improved algorithm significantly outperforms the original hippopotamus optimization algorithm and other mainstream optimization algorithms in terms of convergence speed, solution accuracy, and global search ability. Moreover, statistical analysis further confirms the superiority of the improved algorithm in balancing exploration and exploitation, particularly when dealing with high-dimensional multimodal functions. This study provides new insights and enhancement strategies for the application of the hippopotamus optimization algorithm in solving complex optimization problems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。