Follicle-stimulating hormone (FSH) is an essential regulator of gonadal function and fertility. Loss-of-function mutations in the FSHB/Fshb gene cause hypogonadotropic hypogonadism in humans and mice. Both gonadotropin-releasing hormone (GnRH) and activins, members of the transforming growth factor β (TGFβ) superfamily, stimulate FSH synthesis; yet, their relative roles and mechanisms of action in vivo are unknown. Here, using conditional gene-targeting, we show that the canonical mediator of TGFβ superfamily signaling, SMAD4, is absolutely required for normal FSH synthesis in both male and female mice. Moreover, when the Smad4 gene is ablated in combination with its DNA binding cofactor Foxl2 in gonadotrope cells, mice make essentially no FSH and females are sterile. Indeed, the phenotype of these animals is remarkably similar to that of Fshb-knockout mice. Not only do these results establish SMAD4 and FOXL2 as essential master regulators of Fshb transcription in vivo, they also suggest that activins, or related ligands, could play more important roles in FSH synthesis than GnRH.
Follicle-stimulating hormone synthesis and fertility depend on SMAD4 and FOXL2.
卵泡刺激素的合成和生育能力取决于SMAD4和FOXL2
阅读:9
作者:Fortin Jérôme, Boehm Ulrich, Deng Chu-Xia, Treier Mathias, Bernard Daniel J
| 期刊: | FASEB Journal | 影响因子: | 4.200 |
| 时间: | 2014 | 起止号: | 2014 Aug;28(8):3396-410 |
| doi: | 10.1096/fj.14-249532 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
