In this research, enhanced versions of the Artificial Hummingbird Algorithm are used to accurately identify unknown parameters in Proton Exchange Membrane Fuel Cell (PEMFC) models. In particular, we propose a multi strategy variant, the Lévy Chaotic Artificial Hummingbird Algorithm (LCAHA), which combines sinusoidal chaotic mapping, Lévy flights and a new cross update foraging strategy. The combination of this method with PEMFC parameters results in a significantly improved performance compared to traditional methods, such as Particle Swarm Optimization (PSO), Differential Evolution (DE), Grey Wolf Optimizer (GWO), and Sparrow Search Algorithm (SSA), which we use as baselines to validate PEMFC parameters. The quantitative results demonstrate that LCAHA attains a minimum Sum of Squared Errors (SSE) of 0.0254 and standard deviation of 4.59E-08 for the BCS 500W PEMFC model, which is much lower than the SSE values obtained for PSO (0.1924) and GWO (0.0364), thereby validating the superior accuracy and stability of LCAHA. Moreover, LCAHA converges faster than DE and SSA, reducing runtime by about 47%. The robustness and reliability of LCAHA-simulated and actual I-V curves across six PEMFC stacks are shown to be in close alignment.
A levy chaotic horizontal vertical crossover based artificial hummingbird algorithm for precise PEMFC parameter estimation.
一种基于混沌水平垂直交叉的人工蜂鸟算法,用于精确估计PEMFC参数
阅读:6
作者:Jangir Pradeep, Ezugwu Absalom E, Saleem Kashif, Arpita, Agrawal Sunilkumar P, Pandya Sundaram B, Parmar Anil, Gulothungan G, Abualigah Laith
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 28; 14(1):29597 |
| doi: | 10.1038/s41598-024-81168-6 | 种属: | Bird |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
