We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system ("driven drops"), or (ii) a prescribed angular momentum ("isolated drops"). For families of axisymmetric drops instabilities may occur for either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013].
On the Stability of Rotating Drops.
旋转液滴的稳定性
阅读:9
作者:Nurse A K, Coriell S R, McFadden G B
| 期刊: | Journal of Research of the National Institute of Standards and Technology | 影响因子: | 1.300 |
| 时间: | 2015 | 起止号: | 2015 Apr 20; 120:74-101 |
| doi: | 10.6028/jres.120.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
