Enhancing DHA supplementation adherence: A Bayesian approach with finite mixture models and irregular interim schedules in adaptive trial designs.

提高 DHA 补充剂依从性:采用贝叶斯方法,结合有限混合模型和自适应试验设计中的不规则中期方案

阅读:11
作者:Dutta Sreejata, Boyd Samuel, Carlson Susan E, Christifano Danielle N, Lee Gene T, Smith Sharla A, Gajewski Byron J
Docosahexaenoic acid (DHA) supplementation has proven beneficial in reducing preterm births. However, the challenge lies in addressing nonadherence to prescribed supplementation regimens-a hurdle that significantly impacts clinical trial outcomes. Conventional methods of adherence estimation, such as pill counts and questionnaires, usually fall short when estimating adherence within a specific dosage group. Thus, we propose a Bayesian finite mixture model to estimate adherence among women with low baseline red blood cell phospholipid DHA levels (<6%) receiving higher DHA doses. In our model, adherence is defined as the proportion of participants classified into one of the two distinct components in a normal mixture distribution. Subsequently, based on the estimands from the adherence model, we introduce a novel Bayesian adaptive trial design. Unlike conventional adaptive trials that employ regularly spaced interim schedules, the novelty of our proposed trial design lies in its adaptability to adherence percentages across the treatment arm through irregular interims. The irregular interims in the proposed trial are based on the effect size estimation informed by the finite mixture model. In summary, this study presents innovative methods for leveraging the capabilities of Bayesian finite mixture models in adherence analysis and the design of adaptive clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。