Thraustochytrids are unicellular marine heterotrophic protists, which have recently shown a promising ability to produce omega-3 fatty acids from lignocellulosic hydrolysates and wastewaters. Here we studied the biorefinery potential of the dilute acid-pretreated marine macroalgae (Enteromorpha) in comparison with glucose via fermentation using a previously isolated thraustochytrid strain (Aurantiochytrium limacinum PKU#Mn4). The total reducing sugars in the Enteromorpha hydrolysate accounted for 43.93% of the dry cell weight (DCW). The strain was capable of producing the highest DCW (4.32 ± 0.09 g/L) and total fatty acids (TFA) content (0.65 ± 0.03 g/L) in the medium containing 100 g/L of hydrolysate. The maximum TFA yields of 0.164 ± 0.160 g/g DCW and 0.196 ± 0.010 g/g DCW were achieved at 80 g/L of hydrolysate and 40 g/L of glucose in the fermentation medium, respectively. Compositional analysis of TFA revealed the production of equivalent fractions (% TFA) of saturated and polyunsaturated fatty acids in hydrolysate or glucose medium. Furthermore, the strain yielded a much higher fraction (2.61-3.22%) of eicosapentaenoic acid (C20:5n-3) in the hydrolysate medium than that (0.25-0.49%) in the glucose medium. Overall, our findings suggest that Enteromorpha hydrolysate can be a potential natural substrate in the fermentative production of high-value fatty acids by thraustochytrids.
Saturated and Polyunsaturated Fatty Acids Production by Aurantiochytrium limacinum PKU#Mn4 on Enteromorpha Hydrolysate.
Aurantiochytrium limacinum PKU#Mn4 在肠浒苔水解物上生产饱和脂肪酸和多不饱和脂肪酸
阅读:4
作者:He Yaodong, Zhu Xingyu, Ning Yaodong, Chen Xiaohong, Sen Biswarup, Wang Guangyi
| 期刊: | Marine Drugs | 影响因子: | 5.400 |
| 时间: | 2023 | 起止号: | 2023 Mar 23; 21(4):198 |
| doi: | 10.3390/md21040198 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
