A Comparative In Vitro Digestion Study of Three Lipid Delivery Systems for Arachidonic and Docosahexaenoic Acids Intended to Be Used for Preterm Infants.

针对早产儿,对三种用于花生四烯酸和二十二碳六烯酸的脂质输送系统进行体外消化比较研究

阅读:11
作者:Pardo de Donlebún Blanca, Chabni Assamae, Bañares Celia, Torres Carlos F
It is well stablished that docosahexaenoic (DHA) and arachidonic (ARA) acids fulfill relevant biological activities, especially in newborns. However, oils containing these fatty acids are not always optimally digestible. To address this, various formulation strategies and lipid delivery systems have been developed. This study compares the following three formulations in an in vitro digestion model to assess bioaccessibility: Enfamil(®) DHA & ARA (Mead Johnson & Company), an emulsion of Formulaid(TM), AquaCelle(®), and pasteurized donated human milk, and a previously characterized enzymatic glycerolysis product (GP) of ARA oil and microalgae oil in a 2:1 (w:w) ratio. To evaluate digestibility, parameters such as the percentage of oily phase (OP), micellar phase (MP), free fatty acids, and monoacylglycerols in the digestion product (DP) were considered. Additionally, diacylglycerol content in the MP can be used as an indirect marker of the emulsification capacity of the DP, and consequently, as an indicator of bioaccessibility. The GP demonstrated the highest bioaccessibility, with a DP containing more than 80% MP (<14% OP), rich in free fatty acids (60%) and monoacylglycerols (17%). Furthermore, more than 40% of total diacylglycerols were present in MP, highlighting GPs' potential as a superior delivery system for DHA and ARA in preterm infant formulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。