BACKGROUND: Data-generating processes are key to the design of Monte Carlo simulations. It is important for investigators to be able to simulate data with specific characteristics. METHODS: We described an iterative bisection procedure that can be used to determine the numeric values of parameters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a specified marginal or population-average hazard ratio. RESULTS: In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that resulted in the simulated data having the desired characteristics. CONCLUSION: An iterative bisection procedure can be used to identify numeric values for parameters in data-generating processes to generate data with specified characteristics.
The iterative bisection procedure: a useful tool for determining parameter values in data-generating processes in Monte Carlo simulations.
迭代二分法:蒙特卡罗模拟中数据生成过程中确定参数值的有用工具
阅读:4
作者:Austin, Peter, C
| 期刊: | BMC Medical Research Methodology | 影响因子: | 3.400 |
| 时间: | 2023 | 起止号: | 2023 Feb 17; 23(1):45 |
| doi: | 10.1186/s12874-023-01836-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
