In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1) and showed by segregation analysis that the red kernel phenotype is linked to this gene. Genetic mapping using SNP markers confirms its position on chromosome 5L. Furthermore, genetic complementation experiments using a CaMV 35S::ZmF3'H1 promoter-gene construct established that the encoded protein product was sufficient to perform a 3'-hydroxylation reaction. The Zmf3'h1-specific transcripts were detected in floral and vegetative tissues of Pr1 plants and were absent in pr1. Four pr1 alleles were characterized: two carry a 24 TA dinucleotide repeat insertion in the 5'-upstream promoter region, a third has a 17-bp deletion near the TATA box, and a fourth contains a Ds insertion in exon1. Genetic and transcription assays demonstrated that the pr1 gene is under the regulatory control of anthocyanin transcription factors red1 and colorless1. The cloning and characterization of pr1 completes the molecular identification of all genes encoding structural enzymes of the anthocyanin pathway of maize.
Identification of the pr1 gene product completes the anthocyanin biosynthesis pathway of maize.
pr1基因产物的鉴定完善了玉米花青素生物合成途径
阅读:3
作者:Sharma Mandeep, Cortes-Cruz Moises, Ahern Kevin R, McMullen Michael, Brutnell Thomas P, Chopra Surinder
| 期刊: | Genetics | 影响因子: | 5.100 |
| 时间: | 2011 | 起止号: | 2011 May;188(1):69-79 |
| doi: | 10.1534/genetics.110.126136 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
