The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimization algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm (AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimization Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis entropy rather than with t-entropy in both color standard images and medical pathology images.
Archimedes Optimizer: Theory, Analysis, Improvements, and Applications.
阿基米德优化器:理论、分析、改进和应用
阅读:5
作者:Dhal Krishna Gopal, Ray Swarnajit, Rai Rebika, Das Arunita
| 期刊: | Archives of Computational Methods in Engineering | 影响因子: | 12.100 |
| 时间: | 2023 | 起止号: | 2023;30(4):2543-2578 |
| doi: | 10.1007/s11831-022-09876-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
