The alpha-hemolysin toxin self-assembles in lipid bilayers to form water-filled pores. In recent years, alpha-hemolysin has received great attention, mainly due to its possible usage as a sensing element. We measured the ion currents through single alpha-hemolysin channels and confirmed the presence of two different subpopulations of channels with conductance levels of 465 +/- 30 pS and 280 +/- 30 pS. Different oligomerization states could be responsible for these two conductances. In fact, a heptameric structure of the channel was revealed by x-ray crystallography, whereas atomic force microscopy revealed a hexameric structure. Due to the low resolution of atomic force microscopy the atomic details of the hexameric structure are still unknown, and are here predicted by computational methods. Several possible structures of the hexameric channel were defined, and were simulated by molecular dynamics. The conductances of these channel models were computed by a numerical method based on the Poisson-Nernst-Planck electrodiffusion theory, and the values were compared to experimental data. In this way, we identified a model of the alpha-hemolysin hexameric state with conductance characteristics consistent with the experimental data. Since the oligomerization state of the channel may affect its behavior as a molecular sensor, knowing the atomic structure of the hexameric state will be useful for biotechnological applications of alpha-hemolysin.
Model-based prediction of the alpha-hemolysin structure in the hexameric state.
基于模型的α-溶血素六聚体结构预测
阅读:10
作者:Furini Simone, Domene Carmen, Rossi Michele, Tartagni Marco, Cavalcanti Silvio
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2008 | 起止号: | 2008 Sep;95(5):2265-74 |
| doi: | 10.1529/biophysj.107.127019 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
