Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification.

阅读:5
作者:Chen Wen-Hao, Hsu Chin-Chi, Lai Yi-An, Liu Vincent, Yeh Mi-Yen, Lin Shou-De
Attribute-aware CF models aim at rating prediction given not only the historical rating given by users to items but also the information associated with users (e.g., age), items (e.g., price), and ratings (e.g., rating time). This paper surveys work in the past decade to develop attribute-aware CF systems and finds that they can be classified into four different categories mathematically. We provide readers not only with a high-level mathematical interpretation of the existing work in this area but also with mathematical insight into each category of models. Finally, we provide in-depth experiment results comparing the effectiveness of the major models in each category.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。