BACKGROUND: Forty percent of the world's population live in areas where they are at risk from dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Dengue viruses are transmitted primarily by the mosquito Aedes aegypti. In Cali, Colombia, approximately 30% of field collected Ae. aegypti are naturally refractory to all four dengue serotypes. OBJECTIVES: Use RNA-sequencing to identify those genes that determine refractoriness in feral mosquitoes to dengue. This information can be used in gene editing strategies to reduce dengue transmission. METHODS: We employed a full factorial design, analyzing differential gene expression across time (24, 36 and 48 h post bloodmeal), feeding treatment (blood or blood + dengue-2) and strain (susceptible or refractory). Sequences were aligned to the reference Ae. aegypti genome for identification, assembled to visualize transcript structure, and analyzed for dynamic gene expression changes. A variety of clustering techniques was used to identify the differentially expressed genes. FINDINGS: We identified a subset of genes that likely assist dengue entry and replication in susceptible mosquitoes and contribute to vector competence. MAIN CONCLUSIONS: The differential expression of specific genes by refractory and susceptible mosquitoes could determine the phenotype, and may be used to in gene editing strategies to reduce dengue transmission.
Transcriptome comparison of dengue-susceptible and -resistant field derived strains of Colombian Aedes aegypti using RNA-sequencing.
阅读:4
作者:Coatsworth Heather, Caicedo Paola A, Winsor Geoffrey, Brinkman Fiona, Ocampo Clara B, Lowenberger Carl
| 期刊: | Memorias Do Instituto Oswaldo Cruz | 影响因子: | 2.500 |
| 时间: | 2021 | 起止号: | 2021 May 28; 116:e200547 |
| doi: | 10.1590/0074-02760200547 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
