Chameleon swarm algorithm with Morlet wavelet mutation for superior optimization performance.

阅读:3
作者:Kusla Vipan, Brar Gurbinder Singh, Kaur Harpreet, Sandhu Ramandeep, Prabha Chander, Hassan Md Mehedi, Abdulla Shahab, Alam Md Rittique, Alshathri Samah, El-Shafai Walid
Metaheuristic algorithms play a vital role in addressing a wide range of real-world problems by overcoming hardware and computational constraints. The Chameleon Swarm Algorithm (CSA) is a modern metaheuristic algorithm that uses how chameleons act. To improve the capabilities of the CSA, this work proposes a modified version of the Chameleon Swarm Algorithm to find better optimal solutions applicable to various application areas. The effectiveness of the proposed algorithm is assessed using 97 typical benchmark functions and three real-world engineering design problems. To validate the efficacy of the proposed algorithm, it has been compared to a number of well-known and widely-used classical algorithms, the Gravitational Search Algorithm, the Earthworm Optimization. The proposed modified Chameleon Swarm Algorithm using Morlet wavelet mutation and Lévy flight (mCSAMWL) is superior to existing algorithms for both unimodal and multimodal functions, as demonstrated by Friedman's mean rank test as well as three real world engineering design problems. Five performance metrics-average energy consumption, total energy consumption, total residual energy, dead node and cluster head frequency are taken into consideration when evaluating the performances against state-of-the-art algorithms. For nine different simulation scenarios, the proposed algorithm mCSAMWL outperforms the Atom Search Optimization (ASO), Hybrid Particle Swarm Optimization and Grey Wolf Optimization (PSO-GWO), Bald Eagle Search Algorithm (BES), the African Vulture Optimization Algorithm (AVOA), and the Chameleon Swarm Algorithm (CSA) in terms of average energy consumption and total energy consumption by 50.9%, 52.6%, 45%, 42.4%, 50.1% and 51.4%, 53.3%, 45.6%, 42.4%, 50.7%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。