Metabolic signaling through the posttranslational linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents a unique signaling paradigm operative during lethal cellular stress and a pathway that we and others have recently shown to exert cytoprotective effects in vitro and in vivo. Accordingly, the present work addresses the contribution of the hexosaminidase responsible for removing O-GlcNAc (ie, O-GlcNAcase) from proteins. We used pharmacological inhibition, viral overexpression, and RNA interference of O-GlcNAcase in isolated cardiac myocytes to establish its role during acute hypoxia/reoxygenation. Elevated O-GlcNAcase expression significantly reduced O-GlcNAc levels and augmented posthypoxic cell death. Conversely, short interfering RNA directed against, or pharmacological inhibition of, O-GlcNAcase significantly augmented O-GlcNAc levels and reduced posthypoxic cell death. On the mechanistic front, we evaluated posthypoxic mitochondrial membrane potential and found that repression of O-GlcNAcase activity improves, whereas augmentation impairs, mitochondrial membrane potential recovery. Similar beneficial effects on posthypoxic calcium overload were also evident. Such changes were evident without significant alteration in expression of the major putative components of the mitochondrial permeability transition pore (ie, voltage-dependent anion channel, adenine nucleotide translocase, cyclophilin D). The present results provide definitive evidence that O-GlcNAcase antagonizes posthypoxic cardiac myocyte survival. Moreover, such results support a renewed approach to the contribution of metabolism and metabolic signaling to the determination of cell fate.
Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury.
阅读:3
作者:Ngoh Gladys A, Facundo Heberty T, Hamid Tariq, Dillmann Wolfgang, Zachara Natasha E, Jones Steven P
| 期刊: | Circulation Research | 影响因子: | 16.200 |
| 时间: | 2009 | 起止号: | 2009 Jan 2; 104(1):41-9 |
| doi: | 10.1161/CIRCRESAHA.108.189431 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
