The majority of methods for detecting differentially abundant proteins between samples in label-free LC-MS bottom-up proteomics experiments rely on statistically testing inferred protein abundances derived from peptide ionization intensities or averaging peptide level statistics. Here, we statistically test peptide ionization intensities directly and combine the resulting dependent P-values using the Empirical Brown's Method (EBM), avoiding error introduced through the estimation of protein abundances or summarizing test statistics. We show that on a spike-in proteomics dataset, a peptide level approach using EBM outperforms differential abundance detection using a protein level approach and several analysis workflows, including MSstats. Additionally, we demonstrate the effectiveness of this approach by detecting enriched proteins from an activity-based protein profiling dataset.
Detecting differential protein abundance by combining peptide level P-values.
阅读:3
作者:Killinger Bryan J, Petyuk Vladislav A, Wright Aaron T
| 期刊: | Molecular Omics | 影响因子: | 2.400 |
| 时间: | 2020 | 起止号: | 2020 Dec 1; 16(6):554-562 |
| doi: | 10.1039/d0mo00045k | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
