Single-nucleus transcriptomics reveals a distinct microglial state and increased MSR1-mediated phagocytosis as common features across dementia subtypes.

阅读:14
作者:Chia Sook-Yoong, Li Mengwei, Li Zhihong, Tu Haitao, Lee Jolene Wei Ling, Qiu Lifeng, Ling Jingjing, Reynolds Richard, Albani Salvatore, Tan Eng-King, Ng Adeline Su Lyn, Chen Jinmiao, Zeng Li
BACKGROUND: Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease dementia (PDD) collectively represent the majority of dementia cases worldwide. While these subtypes share clinical, genetic, and pathological features, their transcriptomic similarities and differences remain poorly understood. METHODS: We applied single-nucleus RNA-sequencing (snRNA-seq) to prefrontal cortex samples from individuals with non-cognitive impairment control (NCI), and dementia subtypes (AD, DLB, and PDD) to investigate cell type-specific gene expression patterns and pathways underlying pathological similarities and differences across dementia subtypes. SnRNA-seq findings were validated through RNAscope, immunohistochemistry, and additional biochemical analyses in human tissues and cellular models. RESULTS: SnRNA-seq analysis revealed elevated microglial proportions across all dementia subtypes compared to NCI. Further analysis of cell type-specific transcriptomes identified overlapping differentially expressed genes (DEGs) between microglia and oligodendrocytes across all dementia subtypes. While AD showed molecular similarities to NCI, PDD and DLB were clustered more closely together, sharing a greater number of DEGs and related pathways, predominantly associated with microglia. Investigation of interactions between microglia and oligodendrocytes revealed a distinct microglial state in all dementia subtypes. MSR1, a gene encoding a scavenger receptor, was upregulated in microglia across all dementia subtypes, along with its associated gene HSPA1A in oligodendrocytes. RNAscope supported the potential interaction between microglia and oligodendrocytes, where these cells were in closer proximity to each other in human cortical tissues of PDD compared to NCI. MSR1 expression was significantly increased in cortical primary microglia from PD mice compared with non-transgenic (NTg) mice. Additionally, the expression of myelin-associated genes (MBP, MOBP, and PLP1) was significantly upregulated in PD microglia compared to NTg, supporting the presence of the distinct microglia. Furthermore, MSR1-positive microglia colocalised with MBP in cortical tissue of PDD patients, suggesting a functional role of MSR1 in myelin debris clearance. Overexpression of MSR1 in microglial cells enhanced their phagocytic activity toward myelin, and reciprocally, myelin treatment upregulated MSR1 protein levels, indicating enhanced MSR1-mediated myelin phagocytosis. CONCLUSIONS: Our findings provide novel insights into the cell type-specific role of microglial MSR1 in AD, DLB, and PDD, linking its increased phagocytic capacity to myelin defects as a common feature of neurodegenerative dementias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。