Microtubule-like properties of the bacterial actin homolog ParM-R1.

阅读:6
作者:Popp David, Narita Akihiro, Lee Lin Jie, Larsson MÃ¥rten, Robinson Robert C
In preparation for mammalian cell division, microtubules repeatedly probe the cytoplasm to capture chromosomes and assemble the mitotic spindle. Critical features of this microtubule system are the formation of radial arrays centered at the centrosomes and dynamic instability, leading to persistent cycles of polymerization and depolymerization. Here, we show that actin homolog, ParM-R1 that drives segregation of the R1 multidrug resistance plasmid from Escherichia coli, can also self-organize in vitro into asters, which resemble astral microtubules. ParM-R1 asters grow from centrosome-like structures consisting of interconnected nodes related by a pseudo 8-fold symmetry. In addition, we show that ParM-R1 is able to perform persistent microtubule-like oscillations of assembly and disassembly. In vitro, a whole population of ParM-R1 filaments is synchronized between phases of growth and shrinkage, leading to prolonged synchronous oscillations even at physiological ParM-R1 concentrations. These results imply that the selection pressure to reliably segregate DNA during cell division has led to common mechanisms within diverse segregation machineries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。