Magnitude magnetic resonance (MR) images are noise-contaminated measurements of the true signal, and it is important to assess the noise in many applications. A recently introduced approach models the magnitude MR datum at each voxel in terms of a mixture of upto one Rayleigh and an a priori unspecified number of Rice components, all with a common noise parameter. The Expectation-Maximization (EM) algorithm was developed for parameter estimation, with the mixing component membership of each voxel as the missing observation. This paper revisits the EM algorithm by introducing more missing observations into the estimation problem such that the complete (observed and missing parts) dataset can be modeled in terms of a regular exponential family. Both the EM algorithm and variance estimation are then fairly straightforward without any need for potentially unstable numerical optimization methods. Compared to local neighborhood- and wavelet-based noise-parameter estimation methods, the new EM-based approach is seen to perform well not only on simulation datasets but also on physical phantom and clinical imaging data.
On the Expectation-Maximization Algorithm for Rice-Rayleigh Mixtures With Application to Noise Parameter Estimation in Magnitude MR Datasets.
阅读:4
作者:Maitra, Ranjan
| 期刊: | Sankhya-Series B-Applied and Interdisciplinary Statistics | 影响因子: | 0.700 |
| 时间: | 2013 | 起止号: | 2013 Nov;75(2):293-318 |
| doi: | 10.1007/s13571-012-0055-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
