Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo.

阅读:4
作者:Chu Lee-Thean, Fong Steven H, Kondrychyn Igor, Loh Siau Lin, Ye Zhanrui, Korzh Vladimir
The yolk syncytial layer (YSL) performs multiple critical roles during zebrafish development. However, little is known about the cellular and molecular mechanisms that underlie the formation of this important extraembryonic structure. Here, we demonstrate by timelapse confocal microscopy of a transgenic line expressing membrane-targeted GFP that the YSL forms as a result of the absence of cytokinesis between daughter nuclei at the tenth mitotic division and the regression of pre-existing marginal cell membranes, thus converting the former margin of the blastoderm into a syncytium. We show that disruption of components of the cytoskeleton induces the formation of an expanded YSL, and identify Rock1 as the regulator of cytoskeletal dynamics that lead to YSL formation. Our results suggest that the YSL forms as a result of controlled cytokinesis failure in the marginal blastomeres, and Rock1 function is necessary for this process to occur. Uncovering the cellular and molecular mechanisms underlying zebrafish YSL formation offers significant insight into syncytial development in other tissues as well as in pathological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。